Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e29645, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699018

ABSTRACT

Porous-activated carbons (ACs) derived from Moroccan pine cones (PC) were synthesised by a two step-chemical activation/carbonisation method using phosphoric acid (PC-H) and zinc chloride (PC-Z) as activating agents and used for the adsorption of bisphenol A (BPA) from water. Several techniques (TGA/DTA, FT-IR, XRD, SEM and BET) were used to determine the surface area and pore characterisation and variations during the preparation of the adsorbents. The modification significantly increased the surface area of both ACs, resulting in values of 1369.03 m2 g-1 and 1018.86 m2 g-1 for PC-H and PC-Z, respectively. Subsequent adsorption tests were carried out, varying parameters including adsorbent dosage, pH, initial BPA concentration, and contact time. Therefore, the highest adsorption capacity was observed when the BPA molecules were in their neutral form. High pH values were found to be unfavourable for the removal of bisphenol A from water. The results showed that BPA adsorption kinetics and isotherms followed pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption was spontaneous and endothermic. Besides, the regeneration of spent adsorbents demonstrated their reusability. The adsorption mechanisms can be attributed to physical adsorption, hydrogen bonds, electrostatic forces, hydrophobic interactions, and π-π intermolecular forces.

2.
Bioresour Technol ; 400: 130680, 2024 May.
Article in English | MEDLINE | ID: mdl-38593965

ABSTRACT

This work investigated elemental sulfur (S0) biorecovery from Phosphogypsum (PG) using sulfur-oxidizing bacteria in an O2-based membrane biofilm reactor (MBfR). The system was first optimized using synthetic sulfide medium (SSM) as influent, then switched to biogenic sulfide medium (BSM) generated by biological reduction of PG alkaline leachate. The results using SSM had high sulfide-oxidation efficiency (98 %), sulfide to S0 conversion (∼90 %), and S0 production rate up to 2.7 g S0/(m2.d), when the O2/S ratio was ∼0.5 g O2/g S. With the BSM influent, the system maintained high sulfide-to-S0 conversion rate (97 %), and S0-production rate of 1.6 g S0/(m2.d). Metagenomic analysis revealed that Thauera was the dominant genus in SSM and BSM biofilms. Furthermore, influent composition affected the bacterial community structure and abundances of functional microbial sulfur genes, modifying the sulfur-transformation pathways in the biofilms. Overall, this work shows promise for O2-MBfR usage in S0 biorecovery from PG-leachate and other sulfidogenic effluents.


Subject(s)
Biofilms , Bioreactors , Calcium Sulfate , Oxygen , Phosphorus , Sulfur , Bioreactors/microbiology , Sulfur/metabolism , Oxygen/metabolism , Calcium Sulfate/chemistry , Membranes, Artificial , Metagenomics/methods , Bacteria/metabolism , Bacteria/genetics , Sulfides , Oxidation-Reduction
3.
J Environ Manage ; 354: 120317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387346

ABSTRACT

Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.


Subject(s)
Environmental Pollutants , Olea , Wastewater , Olea/chemistry , Sewage , Olive Oil , Fertilizers/analysis , Environmental Pollutants/analysis , Phosphates , Minerals , Industrial Waste/analysis , Waste Disposal, Fluid/methods
4.
Environ Sci Technol ; 57(51): 21736-21743, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38085930

ABSTRACT

Biological sulfide oxidation is an efficient means to recover elemental sulfur (S0) as a valuable resource from sulfide-bearing wastewater. This work evaluated the autotrophic sulfide oxidation to S0 in the O2-based membrane biofilm reactor (O2-MBfR). High recovery of S0 (80-90% of influent S) and high sulfide oxidation (∼100%) were simultaneously achieved when the ratio of O2-delivery capacity to sulfide-to S0 surface loading (SL) (O2/S2- → S0 ratio) was around 1.5 (g O2/m2-day/g O2/m2-day). On average, most of the produced S0 was recovered in the MBfR effluent, although the biofilm could be a source or sink for S0. Shallow metagenomic analysis of the biofilm showed that the top sulfide-oxidizing genera present in all stages were Thauera, Thiomonas, Thauera_A, and Pseudomonas. Thiomonas or Pseudomonas was the most important genus in stages that produced almost only S0 (i.e., the O2/S2- → S0 ratio around 1.5 g of the O2/m2-day/g O2/m2-day). With a lower sulfide SL, the S0-producing genes were sqr and fccAB in Thiomonas. With a higher sulfide SL, the S0-producing genes were in the soxABDXYZ system in Pseudomonas. Thus, the biofilm community of the O2-MBfR adapted to different sulfide-to-S0 SLs and corresponding O2-delivery capacities. The results illustrate the potential for S0 recovery using the O2-MBfR.


Subject(s)
Bioreactors , Oxygen , Oxidation-Reduction , Sulfur , Biofilms , Sulfides , Denitrification
5.
Sci Total Environ ; 904: 166296, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37591387

ABSTRACT

Phosphogypsum (PG), a by-product of the phosphate industry, is high in sulfate, (SO42-), which makes it an excellent substrate for sulfate-reducing bacteria (SRB) to produce hydrogen sulfide. This work aimed to optimize SO42- leaching from PG to achieve a high biological reduction of SO42- and generate high sulfide concentrations for subsequent use in the biological recovery of elemental sulfur. Five SRB consortia were isolated and enriched from: IS (Industrial sludges), MS (Marine sediments), WC (Winogradsky column), SNV (petroleum industry sediments) and PG (stored Phosphogypsum). The five consortia showed reduction activity when using PG leachate (with water) as source of SO42- and lactate, acetate, or glucose as the electron donor. The highest reduction rate (81.5 %) was registered using lactate and the IS consortium (81.5 %) followed by MS (79 %) and PG (71 %). To enhance the concentration of leached SO42- from PG for future utilization with the isolated consortia, PG was treated with NaOH solutions (2 % and 5 %). SO42- release of 97 % was achieved with a 5 % concentration and the resulting leachate was further diluted to target a SO42- concentration of 12.4 g·L-1 for utilization with the isolated consortia. Compared to water leachate, a significantly higher reduction rate was registered (2 g·L-1 of SO42) using the IS consortium, demonstrating limited inhibition effect of sulfide- concentration on SRB functionalities. Moreover, metagenomic analysis of the consortia revealed that using PG as a source of SO42- increased the abundance of Deltaproteobacteria, including known SRB like Desulfovibrio, Desulfomicrobium, and Desulfosporosinus, as well as novel SRB genera (Cupidesulfovibrio, Desulfocurvus, Desulfococcus) that showed, for the first time, significant potential as novel sulfate-reducers using PG as a SO42- source.


Subject(s)
Desulfovibrio , Sulfates , Sulfates/chemistry , Anaerobiosis , Bacteria , Water , Sulfides , Lactates , Oxidation-Reduction
6.
Microb Ecol ; 86(4): 2211-2230, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37280438

ABSTRACT

Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.


Subject(s)
Agricultural Inoculants , Soil , Soil/chemistry , Carbon , Agriculture/methods , Soil Microbiology
7.
Front Plant Sci ; 14: 1154372, 2023.
Article in English | MEDLINE | ID: mdl-37235036

ABSTRACT

Low availability of phosphorus (P) in both acidic and alkaline soils is a major problem for sustainable improvement in wheat crops yield. Optimization of crops productivity can be achieved by increasing the bioavailability of P by phosphate solubilizing Actinomycetota (PSA). However, their effectiveness may vary with changing agro-climatic conditions. In this regard, a greenhouse experiment was conducted to assess the interaction inoculation of five potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4) on the growth and yield of wheat crop in unsterilized P- deficient alkaline and acidic soils. Their performance was compared with single super phosphate (TSP) and reactive RP (BG4). The in-vitro tests showed that all PSA colonize wheat root and form a strong biofilm except Streptomyces anulatus strain P16. Our findings revealed that all PSA significantly improve the shoot/root dry weights, spike biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with RP3 and RP4. However, the combined application of Nocardiopsis alba BC11 along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes and improve the yield biomass up to 19.7% as compared to the triple superphosphate (TSP). This study supports the view that the inoculation with Nocardiopsis alba BC11 has a broad RP solubilization and could alleviate the agricultural losses due to P limitation in acidic and alkaline soils.

8.
Ecotoxicol Environ Saf ; 259: 114997, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37210993

ABSTRACT

Olive mill wastewater sludge (OMWS) is a by-product of the olive extraction process that is attracting substantial attention due to its extremely hazardous effects on aquatic and terrestrial ecosystems. OMWS is a product of the common disposal method of olive oil mill wastewater (OMWW) that accumulates in evaporation ponds. It is estimated that approximately 10 × 106 m3 of OMWS is generated worldwide each year. OMWS is characterized by its significantly variable physicochemical properties and organic pollutant constituents, such as phenols and lipids, which are dependent upon the environmental features of the receiving ponds. Nonetheless, many related studies have recognized the biofertilizer potential of this sludge owing to its high mineral nutrient and organic matter load. OMWS exhibits promising valorization potential in several fields, including agriculture and energy production. Compared to those of OMWW, studies of OMWS are still lacking concerning its composition and characteristics, which are necessary for the future implementation of efficient valorization strategies. The main purpose of this review paper is to fill the gap that exists in the literature by providing a critical analysis of the available data on OMWS production, distribution, characteristics, and properties. Additionally, this work sheds light on important factors affecting OMWS properties, including the variability of the indigenous microbial communities regarding bioremediation. Finally, this review addresses the current and future valorization routes, from detoxification to the development of promising applications in agriculture, energy, and the environment, which could have significant socioeconomic implications for low-income Mediterranean countries.


Subject(s)
Olea , Sewage/chemistry , Wastewater , Waste Disposal, Fluid/methods , Ecosystem , Olive Oil/chemistry , Industrial Waste/analysis
9.
Sci Total Environ ; 870: 162001, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36739012

ABSTRACT

Africa benefits from diverse biomasses that are rich in high-added value materials and precursors for energy, food, agricultural, cosmetic and medicinal applications. Many African countries are interested in valorizing biomasses to develop efficient and integrated biorefinery processes and their use for local and regional economic development. Thus, this report critically reviews the current status of African biomass richness, its diversity, and potential applications. Moreover, particular attention is given to bioenergy production, mainly by biological and thermochemical conversion processes. This also includes biomass valorization in agriculture, particularly for the production of plant-based biostimulants, which are a potential emerging agri-input sector worldwide. This study points out that even though several processes for biofuel, biogas, biofertilizer and biostimulant production have already been established in Africa, their development on a larger scale remains limited. This study also reports the different socioeconomic and political aspects of biomass applications, along with their challenges, opportunities, and future research perspectives, to promote concrete technologies transferable into an industrial level.


Subject(s)
Economic Development , Industry , Biomass , Agriculture , Technology , Biofuels
10.
Microbiol Res ; 261: 127059, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35584559

ABSTRACT

The growing interest in low-input agriculture in recent years has focused the use of microbial biofertilizers to improve plant growth and yield through a better mobilization of indigenous source of key nutrients such as nitrogen, phosphorus, potassium etc. In this context, soil microorganisms especially Actinobacteria might play an important role. With their multifunctional activities, they are involved in nutrient cycling, soil quality and crop productivity as well as plant health which make them not only the eco-friendly alternative for agriculture but also for humankind. Bearing this in mind, it is primordial to further explore the special link between these microorganisms and soil -plant ecosystems. Therefore, this review discusses the importance of Actinobacteria as microbial biofertilizers and highlights the future needs and challenges for using them for sustaining crop. The patents and scientific literature analysis from 2000 to 2020 show that 16 patents claiming Actinobacteria as biocontrol or biofertilizer in agriculture and 949 indexed research articles related to Actinobacteria effect on plant growth and phosphate solubilization have been published. Furthermore, Actinobacteria ability to increase growth and yield of staple crops such as wheat maize, tomato, rice, and chickpea plant have been highlighted. Much more effort and progress are expected in the industrial development of actinobacterial bioinoculants as areas such as synthetic biology and nano-biotechnology advance.


Subject(s)
Actinobacteria , Fertilizers , Agriculture , Bacteria , Crops, Agricultural , Ecosystem , Fertilizers/microbiology , Soil , Soil Microbiology
11.
Environ Sci Pollut Res Int ; 29(49): 74012-74023, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35633456

ABSTRACT

Under arid and semi-arid conditions, direct application of phosphate rock (PR) as a source of phosphorus (P) for crop production is likely influenced by agricultural practices and soil properties. Different approaches could be used to improve the agronomic efficiency of low-grade PR over a wider range of soils and crops. In this study, biological, physical, and chemical treatments of low-grade Moroccan PR were investigated and compared through agronomic trials on faba bean grown under alkaline soil conditions. The physical treatment was based on blending PR with triple superphosphate (TSP) at 75:25 and 50:50 ratios, the biological treatments involved co-application of PR with compost at 50:50 ratio and phospho-compost elaborated from PR (20%), sewage sludge (46%), and wheat residues (34%), while the chemical treatment was obtained by a 30% acidulation of PR by phosphoric acid. Control treatments consisting of zero P application (control), PR alone, and TSP alone were considered to assess the effectiveness of the abovementioned techniques to improve PR agronomic efficiency. A pot experiment was conducted in sandy soil (Jorf Lasfar, central Morocco) for 60 days in a completely randomized design considering eight treatments. All treatments, except the control, were amended with 52 mg kg-1 of P from different PR-based fertilizers before sowing. At the flowering stage (60-day-old plants), results indicated that all PR treatments significantly improved plant growth, root nodulation, and nutrient uptake compared to the control. The relative agronomic efficiency of pretreated PR was significantly higher with phospho-compost treatment (86%) than the partially acidulated PR (78%) or the PR/TSP blend 50:50 (64%). Likewise, P uptake, P use efficiency, number of root nodules, and N uptake all were improved under PR treatments. Our finding revealed that the biological technique based on phospho-compost yielded better compared to chemical and physical treatments.


Subject(s)
Composting , Vicia faba , Fertilizers/analysis , Phosphates , Phosphorus , Sewage/chemistry , Soil/chemistry
12.
Biotechnol Adv ; 57: 107949, 2022.
Article in English | MEDLINE | ID: mdl-35337932

ABSTRACT

Rising global population and affluence are increasing demands for food production and the phosphorus (P) fertilizers needed to grow that food. Essential are new approaches for managing the growing amount of phosphogypsum (PG) that is a by-product of phosphoric-acid production from phosphate rock. Today, only ~15% of the worldwide production of PG is recycled, mainly for agriculture and road construction. This review addresses microbial valorization of PG through strategies that apply sulfur-transforming bacteria: sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB). The focus is on recovering elemental sulfur (S0), which can be used to make the sulfuric acid needed to produce phosphoric acid from rock phosphate. Our review provides in-depth understanding of the microbiological, chemical, and technological bases for microbial reclamation of S0 from PG. The review presents the principles and practices for sulfate leaching from PG, reduction of sulfate to sulfide by SRB, and oxidation of sulfide to S0 by SOB. The choice of electron donor for SRB, control of oxygen delivery to SOB, and nutrient requirements are emphasized. Although microorganism-based technologies for PG reclamation are far from mature, the efficiency of such SRB- and SOB-based processes has been documented at laboratory and industrial scales. This review should spur biotechnological advances toward recovering value from PG.


Subject(s)
Phosphorus , Sulfur , Bacteria , Calcium Sulfate , Oxidation-Reduction , Phosphates , Sulfates , Sulfides
13.
Plants (Basel) ; 10(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070914

ABSTRACT

The present study investigates the effect of Ulva lactuca extract as seed-priming agent for tomato plants under optimal and salinity stress conditions. The aims of this experiment were to assess the effect of seed priming using Ulva lactuca extract in alleviating the salinity stress tomato plants were subjected to, and to find out the possible mechanism of actions behind such a positive effect via means of fractionation of the crude extract and characterization. Salinity application decreased the plant biomass and altered different physiological traits of tomato. However, the application of Ulva lactuca methanol extract (ME) and its fractions (residual fraction (RF), chloroform fraction (CF), butanol fraction (BF), and hexane fraction (HF)) at 1 mg·mL-1 as seed priming substances attenuated the negative effects of salinity on tomato seedlings. Under salinity stress conditions, RF application increased the tomato fresh weight; while ME, RF, and HF treatments significantly decreased the hydrogen peroxide (H2O2) concentration and antioxidant activity in tomato plants. The biochemical analyses of Ulva lactuca extract and fractions showed that the RF recorded the highest concentration of glycine betaine, while the ME was the part with the highest concentrations of total phenols and soluble sugars. This suggests that these compounds might play a key role in the mechanism by which seaweed extracts mitigate salinity stress on plants.

14.
Microorganisms ; 9(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668691

ABSTRACT

Soil fertility and plant nutrition require an adequate management of essential macronutrients such as potassium (K) and phosphorus (P), which are mandatory for plant development. Bioleaching of K and P bearing minerals improves their chemical weathering and increases the performance of the biofertilization strategies. In this study, in vitro and greenhouse experiments were carried out to investigate P and K solubilization traits of nine Actinobacteria (P13, P14, P15, P16, P17, P18, BC3, BC10, and BC11) under fertilization with rock phosphate (RP). K and P solubilization were evaluated on Alexandrov and NBRIP media containing mica and six RP samples, respectively. The actinobacterial strains were able to solubilize K in Alexandrov medium supplemented with RP. However, when soluble P was used instead of RP, only four strains of Actinobacteria (Streptomyces alboviridis P18-Streptomyces griseorubens BC3-Streptomyces griseorubens BC10 and Nocardiopsis alba BC11) solubilized K. The solubilization values of K ranged from 2.6 to 41.45 mg/L while those of P varied from 0.1 to 32 mg/L. Moreover, all strains were able to produce IAA, siderophore, HCN, and ammonia and significantly improved the germination rate and the vigor index of wheat. The pot experiments revealed that four strains (Streptomyces alboviridis P18, Streptomyces griseorubens BC3, Streptomyces griseorubens BC10, and Nocardiopsis alba BC11) significantly improved the growth parameters of wheat, namely root length (1.75-23.84%), root volume (41.57-71.46%), root dry weight (46.89-162.41%), shoot length (8.92-23.56%), and shoot dry weight (2.56-65.68%) compared to the uninoculated control. These findings showed that Streptomyces griseorubens BC10 and Nocardiopsis alba BC11 are promising candidates for the implementation of efficient biofertilization strategies to improve soil fertility and plant yield under rock P and rock K fertilization.

15.
Front Microbiol ; 12: 814553, 2021.
Article in English | MEDLINE | ID: mdl-35265049

ABSTRACT

Olive mill wastewater sludge (OMWS) is the main by-product of the olive industry. OMWS is usually dumped in landfills without prior treatment and may cause several eco-environmental hazards due to its high toxicity, which is mainly attributed to polyphenols and lipids. OMWS is rich in valuable biocompounds, which makes it highly desirable for valorization by composting. However, there is a need to understand how microbial communities evolve during OMWS composting with respect to physicochemical changes and the dynamics of pollutant degradation. In this study, we addressed the relationship between microbial community, physicochemical variations and pollutants degradation during the co-composting of OMWS and green wastes using metagenomic- and culture-dependent approaches. The results showed that in raw OMWS, Pichia was the most represented genus with almost 53% of the total identified fungal population. Moreover, the bacteria that dominated were Zymobacter palmae (20%) and Pseudomonas sp. (19%). The addition of green waste to OMWS improved the actinobacterial diversity of the mixture and enhanced the degradation of lipids (81.3%) and polyphenols (84.54%). Correlation analysis revealed that Actinobacteria and fungi (Candida sp., Galactomyces sp., and Pichia manshurica) were the microorganisms that had the greatest influence on the composting process. Overall, these findings provide for the first time some novel insights into the microbial dynamics during OMWS composting and may contribute to the development of tailored inoculum for process optimization.

16.
Front Plant Sci ; 11: 979, 2020.
Article in English | MEDLINE | ID: mdl-32765544

ABSTRACT

Limited P availability in several agricultural areas is one of the key challenges facing current agriculture. Exploiting P-solubilizing bacteria (PSB) has been an emerging bio-solution for a higher rhizosphere P-availability, meanwhile the above- and below-ground interactions that PSB would trigger remain unclear over plant growing stages. We hypothesized that PSB effects on plant growth may be greater on root traits that positively links with aboveground physiology more than the commonly believed rhizosphere P bio-solubilization. In this study, five contrasting PSB (Pseudomonas spp.) isolates (low "PSB1", moderate "PSB2 and PSB4" and high "PSB3 and PSB5" P-solubilizing capacity "PSC") were used to investigate above- and below-ground responses in wheat fertilized with rock P (RP) under controlled conditions. Our findings show that all PSB isolates increased wheat root traits, particularly PSB5 which increased root biomass and PSB3 that had greater effect on root diameter in 7-, 15- and 42-day old plants. The length, surface and volume of roots significantly increased along with higher rhizosphere available P in 15- and 42-day old plants inoculated with PSB4 and PSB2. Shoot biomass significantly increased with both PSB2 and PSB5. Root and shoot physiology significantly improved with PSB1 (lowest PSC) and PSB4 (moderate PSC), notably shoot total P (78.38%) and root phosphatase activity (390%). Moreover, nutrients acquisition and chlorophyll content increased in inoculated plants and was stimulated (PSB2, PSB4) more than rhizosphere P-solubilization, which was also revealed by the significant above- and below-ground inter-correlations, mainly chlorophyll and both total (R = 0.75, p = 0.001**) and intracellular (R = 0.7, p = 0.000114*) P contents. These findings demonstrate the necessity to timely monitor the plant-rhizosphere continuum responses, which may be a relevant approach to accurately evaluate PSB through considering below- and above-ground relationships; thus enabling unbiased interpretations prior to field applications.

17.
Plants (Basel) ; 9(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178418

ABSTRACT

The time when plant biostimulants were considered as "snake oil" is erstwhile and the skepticism regarding their agricultural benefits has significantly faded, as solid scientific evidences of their positive effects are continuously provided. Currently plant biostimulants are considered as a full-fledged class of agri-inputs and highly attractive business opportunity for major actors of the agroindustry. As the dominant category of the biostimulant segment, seaweed extracts were key in this growing renown. They are widely known as substances with the function of mitigating abiotic stress and enhancing plant productivity. Seaweed extracts are derived from the extraction of several macroalgae species, which depending on the extraction methodology lead to the production of complex mixtures of biologically active compounds. Consequently, plant responses are often inconsistent, and precisely deciphering the involved mechanism of action remains highly intricate. Recently, scientists all over the world have been interested to exploring hidden mechanism of action of these resources through the employment of multidisciplinary and high-throughput approaches, combining plant physiology, molecular biology, agronomy, and multi-omics techniques. The aim of this review is to provide fresh insights into the concept of seaweed extract (SE), through addressing the subject in newfangled standpoints based on current scientific knowledge, and taking into consideration both academic and industrial claims in concomitance with market's requirements. The crucial extraction process as well as the effect of such products on nutrient uptake and their role in abiotic and biotic stress tolerance are scrutinized with emphasizing the involved mechanisms at the metabolic and genetic level. Additionally, some often overlooked and indirect effects of seaweed extracts, such as their influence on plant microbiome are discussed. Finally, the plausible impact of the recently approved plant biostimulant regulation on seaweed extract industry is addressed.

18.
Sci Rep ; 10(1): 2820, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071360

ABSTRACT

The present study investigates the biostimulant effects of 18 Crude Bio-Extracts (CBEs) obtained from Microalgae and Cyanobacteria on tomato plant growth, chlorophyll content, nutrient uptake and metabolite profile. Significant root and shoot length improvement (112.65%, 53.70%); was recorded at treatment with Aphanothece sp and C. ellipsoidea CBEs respectively. Meanwhile, the highest root and shoot dry weight (DW) (34.81%, 58.69%) were obtained at treatment with Aphanothece sp. The latter also displayed the maximum uptake of Nitrogen, phosphorus and potassium, which increased by 185.17%, 119.36% and 78.04% respectively compared with non-treated plants. Principal Component Analysis (PCA) confirmed that Phosphorus and Potassium levels in roots were closely related to enhanced Root length, whereas Nitrogen and chlorophyll b were closely related to Shoot and root DW. Additionally, Gas Chromatography-mass spectrometry (GC-MS) indicated that treatment with CBEs, induced the production of a vast array of metabolites. Treated plants recorded higher accumulation of palmitic and stearic acids, which could indicate a stimulation in de novo Lipid synthesis. CBEs also triggered the accumulation of pyridine-3-carboxamide (an amide active form of vitamin B3) and Linolenic acid; one of the key precursors in the biosynthetic pathway leading to plant jasmonates. Our results are a first step towards understanding the effects of microalgal extracts on plant physiology and biochemical pathways. Further investigations on biochemical fractionation of microalgal extracts and agronomic tests of their purified bioactive compounds could be a useful principal novelty for in-depth study of CBE action mechanisms. Other useful tools include; Comparative hormone profiling of treated and non-treated plants accompanied with combined High-Throughput Plant Phenotyping, transcriptomics and metabolomics analysis.


Subject(s)
Agricultural Inoculants , Cyanobacteria/chemistry , Microalgae/chemistry , Solanum lycopersicum , Crop Production , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Metabolomics , Nitrogen/metabolism , Phosphorus/metabolism , Potassium/metabolism
19.
Ecotoxicol Environ Saf ; 185: 109693, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31550565

ABSTRACT

The objective of this study was to investigate chemical, biological and eco-toxicological parameters of a compost produced through the co-composting of dewatered primary sludge (DPS) and date palm waste to evaluate in which extent it can exploited as a bio-fertilizer. DPS and date palm waste were co-composted in aerobic conditions for 210 days. Physico-chemical parameters were evaluated during composting (total organic carbon, total nitrogen, pH, available forms of phosphorus). Furthermore, heavy metals (Cd, Cu, Cr, Pb, Ni, Zn) and antibiotics (fluoroquinolones, macrolides and tetracyclines) content were analyzed in the DPS. To evaluate the genotoxicity of substrates, Vicia faba micronucleus test was carried out. Single and combined toxicities of a mixture of antibiotics (ciprofloxacin, enroflxacin, nalidixic acid, roxithromycin and sulfapyridin) and chromium (Cr2 (SO4)3 and K2Cr2O7) were examined. Although the final compost product showed a significant decrease of the genotoxicity, almost 50% of the micronucleus frequency still remained, which could be explained by the persistence of several recalcitrant compounds such as chromium and some antibiotics. Overall, the presence of antibiotics and chromium showed that some specific combination of contaminants represent an ecological risk for soil health and ecosystems even at environmentally negligible concentrations.


Subject(s)
Anti-Bacterial Agents/toxicity , Chromium/toxicity , Composting , Mutagens/toxicity , Sewage/chemistry , Soil Pollutants/toxicity , Vicia faba/drug effects , Ecosystem , Fertilizers/analysis , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Soil/chemistry , Vicia faba/genetics
20.
Article in English | MEDLINE | ID: mdl-31998701

ABSTRACT

The production of biofertilizers at industrial level is a bottleneck because bacterial strains are generally developed and managed by research laboratories and not by production units. A seamless transition from laboratory to field application is, therefore necessary. This review provides an overview of the constraints that limiting the application or the implementation of Actinobacteria based biofertilizers especially in agricultural field and suggests solutions to overcome some of these limits. General processes of making and controlling the quality of the inoculum are briefly described. In addition, the paper underlines the opportunity of biofertilizers alone or in combination with chemical fertilizers. This review also, highlights the latest studies (until June 2019) and focuses on P-solubilization microorganisms mainly Actinobacteria. The biotechnology of these bacteria is a glimmer of hope for rock phosphate (RP) bioformulation. Since direct application of RP fertilizer is not always agronomically effective due to its sparse solubility.

SELECTION OF CITATIONS
SEARCH DETAIL
...